Deduction and Search Strategies for Regular Multiple-Valued Logics

نویسندگان

  • James J. Lu
  • Neil V. Murray
  • Erik Rosenthal
چکیده

The inference rule !-resolution was introduced in [27] as a technique for developing an SLD-style query answering procedure for the logic programming subset of annotated logic. The inference rule requires that the lattice of truth values be ordinary. In this paper, it is proved that all complete distributive lattices are ordinary. Properties of !-resolution in the general theorem proving setting are explored, including the completeness of a variety of restrictions. It is shown that the pruning effects of classical restriction strategies (for example, ordering and the linear restriction) can be enhanced with the !-operator. Two macro inference rules, annotated hyperresolution and annotated hypertableaux, both of which can also be enhanced with the !-operator, are developed for annotated logics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yaroslav Petrukhin NATURAL DEDUCTION FOR THREE - VALUED REGULAR LOGICS

In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S. C. Kleene’s logics and two intermediate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. T...

متن کامل

Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...

متن کامل

Truth-values as Labels: A General Recipe for Labelled Deduction

We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators re...

متن کامل

Sequent of Relations Calculi: A Framework for Analytic Deduction in Many-Valued Logics

We present a general framework that allows to construct systematically analytic calculi for a large family of (propositional) many-valued logics — called projective logics — characterized by a special format of their semantics. All finite-valued logics as well as infinite-valued Gödel logic are projective. As a case-study, sequent of relations calculi for Gödel logics are derived. A comparison ...

متن کامل

Systematic Construction of Natural Deduction Systems for Many-Valued Logics

A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiple-Valued Logic and Soft Computing

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005